安克创新视觉AI算法工程师
校招全职地点:深圳状态:招聘
任职要求
1. 计算机、数学、电子工程等相关专业博士学历,研究方向为计算机视觉、三维重建或大模型等人工智能方向; 2. 技术能力: (1)深入理解生成式模型(如DiT/扩散模型)与Transformer架构理论,掌握大模型预训练、微调及轻量化部署技术; (2)具备多模态表征学习能力,熟悉CLIP/VLM等跨模态对齐方法在三维感知中的应用 扎实的数学基础,掌握神经渲染、概率生成模型等AI底层理论,能结合多视图几何优化AI-SLAM系统; 3. 科研要求: (1)在CVPR/ICCV/ICRA等顶会或期刊发表过SLAM/三维视觉相关论文; (2)有机器人、无人机等领域的算法开发项目经验(如竞赛、开源项目); 4. 优先条件: 具备嵌入式平台部署经验(如ROS、模型剪枝/量化); 熟悉DiT、VLM等生成式模型在视觉任务中的应用; 参与过割草机/服务机器人等庭院场景相关课题; 5. 综合素质:强烈的技术热情,优秀的逻辑思维与跨学科融合能力,具备产品化意识; 6. 发展支持: 提供机器人/自动驾驶领域顶尖导师一对一指导; 支持学术成果转化与专利申请; 参与行业标准制定及国际学术交流。
工作职责
聚焦基于生成式AI与多模态大模型的机器人三维感知系统研发,推动深度估计、语义理解与AI-SLAM技术的融合创新
包括英文材料
学历+
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
SLAM+
https://docs.mrpt.org/reference/latest/tutorial-slam-for-beginners-the-basics.html
[英文] SLAM for Dummies
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
A Tutorial Approach to Simultaneous Localization and Mapping
https://ouster.com/insights/blog/introduction-to-slam-simultaneous-localization-and-mapping
SLAM is an essential piece in robotics that helps robots to estimate their pose – the position and orientation – on the map while creating the map of the environment to carry out autonomous activities.
[英文] What Is SLAM?
https://www.mathworks.com/discovery/slam.html
How it works, types of SLAM algorithms, and getting started
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
ROS+
https://www.youtube.com/watch?v=92Zz5nnd41c&list=PLk51HrKSBQ8-jTgD0qgRp1vmQeVSJ5SQC
https://www.youtube.com/watch?v=HJAE5Pk8Nyw
Ready to learn ROS2 and take your robotics skills to the next level?
https://www.youtube.com/watch?v=MWKnMPX0Yjg&list=PLU9tksFlQRircAdEplrH9NMm4WtSA8yzi
Do you want to know more about ROS the Robot Operating System?
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
相关职位
社招3年以上
1. 主导基于3D打印场景的嵌入式视觉系统研发,重点解决高精度定位、表面质量检测等核心问题,推进深度学习与强化学习算法在嵌入式环境下的应用; 2. 负责几何视觉处理算法(如三维重建)与深度学习模型(如目标检测)的部署,优化计算效率与内存占用; 3. 负责评估视觉软硬件系统方案的性能问题,给出合理评估建议;
更新于 2025-04-30
校招
1. 与算法、产品密切配合,共同制定视觉AI算法评测标准,设计测试方案与用例,包含感知、运动控制、决策等算法; 2. 熟悉智能硬件产品,专注视觉算法模块测试,构建贴近真实的测试环境,验证AI模型性能与边界能力,协同算法/嵌入式工程师迭代优化; 3. 数据驱动优化,面对不同类型产品,构建对应基于场景的标准化评测数据集,输出算法模型关键性能指标,进行badcase深度分析; 4. 评测体系搭建,建立标准化、可复用的AI模型评测流程与自动化工具链,提升测试覆盖率和效率; 5. 竞品分析:横向竞品AI能力评测,输出差异化分析报告,指导产品技术决策与卖点打造。
更新于 2025-08-19
校招
1. 与算法、产品密切配合,共同制定视觉AI算法评测标准,设计测试方案与用例,包含感知、运动控制、决策等算法; 2. 熟悉智能硬件产品,专注视觉算法模块测试,构建贴近真实的测试环境,验证AI模型性能与边界能力,协同算法/嵌入式工程师迭代优化; 3. 数据驱动优化,面对不同类型产品,构建对应基于场景的标准化评测数据集,输出算法模型关键性能指标,进行badcase深度分析; 4. 评测体系搭建,建立标准化、可复用的AI模型评测流程与自动化工具链,提升测试覆盖率和效率; 5. 竞品分析:横向竞品AI能力评测,输出差异化分析报告,指导产品技术决策与卖点打造。
更新于 2025-08-19