小米决策规划大模型实习生
实习兼职地点:北京状态:招聘
任职要求
、计算机、自动化、数学、自动驾驶等相关方向硕士及以上学历; 2、熟练掌握linux下C++开发,良好的数据结构和算法基础; 3、熟悉深度学习框架,熟悉CNN、LSTM、GRU、Transformers等网络结构及其训练; 以下三点需满足至少一点: 1、熟悉常见的基于模型的规控与端到端算法 2、熟悉常见的大规模强化学习算法,并有在自动驾驶中的实践经历 3、熟悉常见的LLM/VLM模型,并有在自动驾驶中的对齐的经历 加分项: -有较强的研究能力,如发表过论文; -在ACM-ICPC、TopCoder等竞赛中获得过优异成绩; -有NLP、多模态方面的学术或者项目经历,有大模型实践经验。
工作职责
1、开发基于模型的决策规划系统,解决城市、高速等场景下的交互决策、轨迹规划问题; 2、开发大规模强化学习算法与系统,完成Agent在虚拟环境中的训练以及Sim2Real的部署;
包括英文材料
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
学历+
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
LSTM+
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Humans don’t start their thinking from scratch every second.
https://d2l.ai/chapter_recurrent-modern/lstm.html
The term “long short-term memory” comes from the following intuition.
https://developer.nvidia.com/discover/lstm
A Long short-term memory (LSTM) is a type of Recurrent Neural Network specially designed to prevent the neural network output for a given input from either decaying or exploding as it cycles through the feedback loops.
https://www.youtube.com/watch?v=YCzL96nL7j0
Basic recurrent neural networks are great, because they can handle different amounts of sequential data, but even relatively small sequences of data can make them difficult to train.
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
相关职位
实习算法
1. 研究和开发先进的机器学习算法, 应用于智能辅助驾驶的各个领域,包括但不限于: - 端到端大模型 (VLA、世界模型等) - 环境感知 (目标检测、语义分割、多传感器融合等) - 决策规划 (路径规划、行为预测、运动控制等) 2. 探索和实现前沿的人工智能技术, 如深度学习、强化学习、计算机视觉、自然语言处理等,以提升智能辅助驾驶系统的性能、安全性和可靠性。 3. 设计和开发大规模数据集, 用于训练和评估智能辅助驾驶算法。
更新于 2025-07-02

实习软件工程
1. 设计并实现端到端智驾大模型,整合感知、规划与决策功能,提升模型的整体性能与效率; 2. 运用深度学习、强化学习、机器学习等技术,优化模型结构,提高模型对复杂驾驶场景的理解和应对能力; 3. 负责收集、标注和处理自动驾驶相关数据,构建高质量的数据集,为模型训练提供有力支持; 4. 利用数据增强、迁移学习等方法,提升数据利用效率,优化模型的泛化能力; 5. 跟踪自动驾驶和人工智能领域的最新研究成果,探索新技术在端到端大模型中的应用可能性。
更新于 2025-08-06

实习技术
1. 协助研发基于强化学习(RL)或模仿学习(IL)的自动驾驶决策规划算法,解决复杂交通场景下的车辆行为决策与运动规划问题; 2. 参与构建和优化用于训练决策模型的数据处理流程,包括特征工程、场景提取、奖励函数设计及大规模数据集处理; 3. 负责或参与相关算法的仿真测试、实车调试、性能评估与迭代优化,推动算法在真实环境中的性能提升和落地; 4. 跟踪并调研强化学习、模仿学习、行为预测等领域的国际前沿动态与最新研究成果(如顶会论文CVPR, ICRA, NeurIPS, ICML等),并尝试将其应用于实际项目; 5. 协助端到端自动驾驶大模型或相关子模块的研发与优化工作。
更新于 2025-09-08