logo of mi

小米自动驾驶 - 模型部署优化算法工程师

社招全职A247898地点:北京状态:招聘

任职要求


1. 丰富的模型部署和优化经验,包括图优化、算子优化、模型量化/裁剪等
2. 扎实的(Python/C++)编程基础与良好的工程习惯,熟悉常用的数据结构算法
3. 熟悉NV GPU硬件架构与CUDA编程模型,有AI推理框架研发经验者优先
4. 有高性能计算经验者优先
5. 发表过人工智能/机器学习顶会论文者优先

工作职责


1. 负责自动驾驶端侧模型的部署和优化工作
2. 负责模型部署&优化工具链的研发
3. 对模型部署优化技术展开研究,并落地到自动驾驶
包括英文材料
Python+
C+++
数据结构+
算法+
CUDA+
机器学习+
相关职位

logo of mi
社招A62615

1. 负责自动驾驶端侧大模型的部署和优化工作 2. 对大模型部署优化技术展开研究,并落地到自动驾驶,包括模型量化、图优化、算子优化等 3. 参与大模型部署&优化工具链的研发

更新于 2024-09-24
logo of sensetime
社招算法工程

1. 负责端到端自动驾驶模型在不同硬件平台上的部署与优化,参与模型评测; 2. 设计实现模型一致性评测工具链,确保跨平台一致性,识别并解决差异问题; 3. 参与软硬件协同优化设计。与硬件工程师协作,参与硬件设计和优化,提供模型在私有硬件平台的执行效率。

更新于 2025-10-11
logo of amap
社招3年以上技术类-算法

我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型技术在端到端自动驾驶的应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、多模态大模型的训练及调优、BEV感知、基于深度学习/强化学习的规划控制、RLHF、驾驶场景视频生成等领域具备丰富且有独创性的研究经历。 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等。 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等。 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用。 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力。 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。

更新于 2025-10-15
logo of amap
社招1年以上技术类-算法

我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型及端到端模型在车端导航及定位应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、BEV环境感知、多模态融合、强化学习等领域具备丰富且有独创性的研究经历; 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等; 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等; 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和复杂场景泛化能力; 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。

更新于 2025-09-25