小米高级算法工程师
社招全职5年以上A118837地点:上海状态:招聘
任职要求
1. 计算机、电子、数学、机器学习或者统计学相关专业,本科以上学历;5年以上机器学习、深度学习、大模型微调、推理建模经验。有诊断算法实施经验者优先。 2. 精通 Python 编程语言,熟悉常用的数据结构与算法,具备良好的代码编写习惯和代码优化能力,确保算法代码的可读性、可维护性和高效性。 3. 了解机器学习算法原理,包括监督学习、无监督学习、强化学习等,能够运用机器学习算法解决车辆故障诊断中的分类、预测等问题。 4. 熟练掌握至少一种深度学习框架(如 TensorFlow、PyTorch 等),深入理解神经网络的基本原理与架构,包括但不限于循环神经网络(RNN)、卷积神经网络(CNN)、Transformer 等在远程诊断领域的应用,能够灵活运用这些框架搭建、训练和调优模型。 5. 了解常用大模型如Qwen,GLM,Baichuan等,能够通过Prompt调优提升推理精度,并对大模型微调技术如LoRA,P-Tuning等有实践经验;有RAG框架实施经验。 6. 能够使用大模型对车辆故障诊断过程中的诊断方案和维修案例进行总结与分析,提取共性特征和关键步骤,形成标准化的诊断流程和知识库。 7. 运用文本挖掘和机器学习技术,对诊断方案进行优化和改进,提高方案的普适性和有效性,能够基于车辆故障特征、历史维修记录和知识库,自动生成个性化的诊断方案,实现诊断过程的自动化和智能化。 8. 有车辆日志挖掘经验,能够从海量车辆日志数据中提取有价值的信息。
工作职责
1. 通过对海量车辆运行日志的深度解析,提取关键信息,包括车辆故障码、传感器数据、驾驶行为数据等,为故障诊断提供数据支持。 2. 运用数据挖掘技术,如聚类分析、关联规则挖掘等,发现车辆日志中的潜在模式和异常行为,提前预警潜在故障风险,为预防性维护提供依据。 3. 构建车辆故障诊断方案检索系统,基于车辆故障特征和历史维修记录,快速检索出与当前故障相似的诊断方案和维修案例,为诊断人员提供参考。 4. 运用大语言模型、机器学习算法,优化存量远程诊断案例方案推荐,针对存量方案库生成新的方案,提高诊断效率和准确性。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
学历+
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
相关职位
社招5年以上A35523
1、负责端侧CV算法的研发和落地,包括但不限于目标检测、识别、跟踪等算法; 2、负责算法工程化,包括模型工程化和优化等工作; 3、负责端侧算法框架设计开发; 4、可能也会参与一部分多模态大模型相关的工作;
更新于 2025-04-02
社招3-12年SOFTWARE
1. 负责通话算法、音效算法和NN网络设计领域N/N+1方向规划及其落地达成,主导整体方案设计、关键风险识别、核心技术拆解,并推动实现落地,为音频算法技术突破性和体验表现力负责; 2. 主导该领域重点难点算法问题攻关,端到端解决关键算法模块的原型设计和工程实现问题,确保方案按时高质量交付; 3. 追踪业界SOTA技术方案,快速识别机会点,推动该领域音频创新特性的可行性验证,并看护首项目产品落地。
更新于 2025-10-11