logo of quark

夸克智能信息-多模态后训练算法专家-杭州/上海/北京

社招全职1年以上技术类-算法地点:北京 | 杭州 | 上海状态:招聘

任职要求


1、计算机科学、人工智能、机器学习或相关领域的硕士或博士学位;
2、在多模态、计算机视觉NLP、AIGC、计算机图形学、机器学习等一个或多个领域有较深入的研究;
3、有多模态大模型后训练相关经验,benchmark构造经验。
4、能够积极创新, 乐于面对挑战, 负责敬业,优秀的团队合作精神,一起探索新技术,推进技术进步。
加分项:
1、具…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1. 探索研究多模态理解、视频理解等方向的前沿技术;
2. 关注多模态、全模态大模型的后训练相关技术,研判RL在多模态理解上的潜力;
包括英文材料
机器学习+
学历+
OpenCV+
NLP+
大模型+
算法+
还有更多 •••
相关职位

logo of bytedance
实习A222718

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、数据挖掘:负责数据集的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,进行深度的数据挖掘,沉淀高价值信息; 2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)、偏好学习,以及多模态模型训练,提升模型在特定场景下的表现; 3、提示词工程:与业务专家合作,构建和优化结构化的提示词,充分挖掘和利用大模型的能力,高效、精准解决实际问题; 4、信息检索:开发和优化Query理解、召回、相关性排序等技术,提升信息检索的效率和准确性,提升RAG的效果; 5、智能体技术:利用领先的智能体框架,增强大模型的推理、对话和反思能力,解决复杂业务问题,提升用户体验; 6、大模型评测:制定和实施大模型的评估方案,结合人工评估和自动化评估手段,确保模型性能的可靠性和稳定性; 7、应用落地:定义业务问题,设定任务标准和目标,不断优化模型和系统,以达到最佳的业务效果和用户满意度。

更新于 2025-03-04上海
logo of quark
社招3年以上技术类-算法

1. 探索研究多模态生成大模型的设计与开发,探究高效生成、生成理解统一、多模态理解、强化学习/RLHF后训练和高效数据管线设计等方向; 2. 参与研发多模态生成大模型开发等下一代人工智能核心技术,参与大规模生成基础模型预训练与后训练开发。 3. 负责跟踪和研究多模态生成大模型前沿技术调研、落地、对业务进行优化。

更新于 2025-08-22北京|杭州
logo of quark
社招1年以上

1、负责千卡以上规模文本及多模态大模型强化学习训练框架建设;为Quark、通义等过亿用户,提供大模型后训练能力,持续优化模型效果; 2、负责调研和实现业界先进的强化学习方法,并探索算法工程结合的训练方法创新设计,实现模型性能和训练效率的双提升; 3、负责训练效率极致优化,通过前沿技术的调研、引入,以及机制创新,实现业界领先的训练吞吐能力。

更新于 2025-11-30北京|杭州|广州
logo of meituan
校招核心本地商业-基

数据与训练方向: 1.大模型数据体系建设:构建多语言和多模态的数据处理流程和实验链路,优化数据的筛选与配比策略,探索动态数据调整、多阶段训练和课程学习等方法提升数据质量和多样性,优化大模型的训练效果。 2.合成数据探索:探索大规模合成数据方法,应用于复杂任务、推理、代码和多模态等场景。制定合成数据在预训练、强化学习等不同训练阶段的应用策略,并深入研究数据扩展规模定律、数据多样性和模型坍塌等基础问题,推动数据驱动的性能突破。 3.多模态学习与推理:探索多模态预训练的新范式,突破模态融合瓶颈。具体包括实现多模态能力的早期融合、理解与生成的统一建模,研究多模态扩展定律以指导数据与训练方案,扩展超长上下文机制以支持全模态场景等。同时,面向复杂的多模态推理与交互场景,探索多模态强化学习、多模态奖励模型、推理阶段扩展(test-time scaling)以及全模态链式思维(CoT)等方法,提升模型处理复杂任务和全模态交互的能力。 4.高效模型架构设计:设计高效的大模型架构以提升训练和推理效率。探索 MoE(混合专家)、稀疏注意力、线性注意力等高效模型结构,以及模型编辑与合并等技术,研发能够显著提升推理速度和资源利用率的新型模型架构。 5.推理效率与性能优化:推动算法与系统的协同优化,实现模型性能与效率的最大化平衡。基于对硬件计算潜力的深度挖掘,开发高效的模型推理方案和算法,包括模型压缩、剪枝、量化、稀疏化等,降低模型应用部署成本。 后训练方向: 1.后训练数据与流程建设,从指令数据生产、合成、进化、配比等方面提升数据质量,优化指令微调、强化学习、奖励模型等训练pipeline,提升模型综合能力; 2.后训练关键能力建设,包括但不限于优化模型创意生成、多语言、逻辑推理、复杂指令遵循、代码生成、工具调用等能力,提升模型可控性和安全性,拓展模型能力边界; 3.面向准确性、多模信息、最优路径等方向,探索奖励模型的新范式,构建统一模型学习环境,实现模型的价值对齐和能力对齐; 4.面向推理规划能力、多智能体系统、模型自进化等方向,探索下一代强化学习算法,持续提升大模型的智能水平和在真实复杂场景效果; 5.前沿探索:动态推理计算优化(Test-time Compute Optimization)、多智能体协同进化架构 、大规模强化学习系统优化等。

更新于 2025-05-23北京|上海