腾讯元宝-大数据开发工程师
社招全职3年以上CSIG技术地点:深圳状态:招聘
任职要求
1.计算机专业本科及以上学历,同时具备大数据研发经验和后台服务开发经验者优先; 2.3年以上大数据研发经验,包括实时/离线数据采集、治理和业务应用; 3.3年以上后台服务开发经验,熟练掌握微服务架构下的高并发、高可用、高性能技术; 4.编程能力扎实,…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1.岗位职责:; 2.负责腾讯元宝离线和实时数仓的规划和建设,构建标准化和易扩展的数据资产,高效满足业务用数诉求; 3.负责建立数仓与业务应用的结合,推进建设包括标签、推荐系统、事件中心等业务应用,通过结合大数据能力提高后台开发的技术架构多样性; 4.不断优化数据工程规范,抽象总结并沉淀通用方案与平台工具能力,提升研发与用户用数效率。
包括英文材料
学历+
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
微服务+
https://learn.microsoft.com/en-us/training/modules/dotnet-microservices/
Microservice applications are composed of small, independently versioned, and scalable customer-focused services that communicate with each other by using standard protocols and well-defined interfaces.
https://microservices.io/
Microservices - also known as the microservice architecture - is an architectural style that structures an application as a collection of two or more services.
https://spring.io/microservices
Building small, self-contained, ready to run applications can bring great flexibility and added resilience to your code.
https://www.ibm.com/think/topics/microservices
Microservices, or microservices architecture, is a cloud-native architectural approach in which a single application is composed of many loosely coupled and independently deployable smaller components or services.
https://www.youtube.com/watch?v=CqCDOosvZIk
https://www.youtube.com/watch?v=hmkF77F9TLw
Learn about software system design and microservices.
高并发+
https://www.baeldung.com/concurrency-principles-patterns
In this tutorial, we’ll discuss some of the design principles and patterns that have been established over time to build highly concurrent applications.
https://www.baeldung.com/java-concurrency
Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.
https://www.oreilly.com/library/view/concurrency-in-go/9781491941294/
You’ll understand how Go chooses to model concurrency, what issues arise from this model, and how you can compose primitives within this model to solve problems.
https://www.oreilly.com/library/view/modern-concurrency-in/9781098165406/
With this book, you'll explore the transformative world of Java 21's key feature: virtual threads.
https://www.youtube.com/watch?v=qyM8Pi1KiiM
https://www.youtube.com/watch?v=wEsPL50Uiyo
高可用+
https://redis.io/blog/high-availability-architecture/
A high available architecture is when there are a number of different components, modules, or services that work together to maintain optimal performance, irrespective of peak-time loads.
https://www.ibm.com/think/topics/high-availability
High availability (HA) is a term that refers to a system’s ability to be accessible and reliable close to 100% of the time.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
还有更多 •••
相关职位
社招2年以上元宝技术
1.负责元宝业务的离线和实时数仓规划和建设,结合数据、技术与应用等多方特性,构建高可用、易扩展的数仓体系,高效满足业务用数诉求; 2.深入理解业务场景,规划并设计数据模型,为产品、运营、分析、算法等团队提供数据报表、看板、标签体系及深度数据支持,确保各场景数据的及时、稳定; 3.负责建立数仓与数据质量标准和规范,确定数据治理方案,并与内外部团队协作,推动落地实施,不断提升数据质量,确保数据及时、准确与稳定性; 4.不断优化数仓模型,抽象总结并沉淀通用方案与平台工具能力,提升研发与用户用数效率。
更新于 2025-10-31深圳
社招1年以上元宝产品
1.深入理解大数据和AI结合业务场景,通过包括不限于RAG、Tools、Memory等方式,不断提升用户体验; 2.结合现有数据平台能力,抽象沉淀通用组建和能力,完善平台能力,提升业务迭代效率; 3.主导大模型社交方向的应用落地,包括但不限于:社交对话、情感陪伴等; 4.与数据工程师、算法团队、业务部门紧密合作,确保产品技术方案可行且符合业务需求;协调资源推进产品开发、测试、上线及迭代,把控项目进度与交付质量。
更新于 2025-11-08北京
社招1年以上元宝产品
1.深入理解大数据和AI结合业务场景,通过包括不限于RAG、Tools、Memory等方式,不断提升用户体验; 2.结合现有数据平台能力,抽象沉淀通用组建和能力,完善平台能力,提升业务迭代效率; 3.主导大模型社交方向的应用落地,包括但不限于:社交对话、情感陪伴等; 4.与数据工程师、算法团队、业务部门紧密合作,确保产品技术方案可行且符合业务需求;协调资源推进产品开发、测试、上线及迭代,把控项目进度与交付质量。
更新于 2025-11-08深圳