携程资深风控策略算法工程师(MJ029070)
社招全职4-8年技术团队系统安全地点:上海状态:招聘
任职要求
1、经验与领域认知 4-8 年互联网风控/安全领域经验,有头部互联网公司风控策略工作经历优先。 精通设备指纹特征、行为序列分析、账号风控、营销反作弊等至少 2 个领域,有处理千万级 DAU 平台风控经验者加分。 2、技术能力 必备:Python/SQL,熟练使用 LR/XGBoost/LightGBM 等机器学习框架,有特征工程与模型调优经验。 加分:Spark/Flink 实时计算、Graph Embedding、风控引擎开发(如 AlphaRisk、Squirrel)。 3、软实力 优秀的逻辑思维与沟通能力,能推动跨团队协作(技术/产品/运营)解决复杂问题。 抗压能力强,面对高频变化的黑产攻击手法,能快速响应并制定防御方案。 4、加分项 有黑灰产攻击模拟经验,能编写Python 脚本复现撞库、批量注册、营销漏洞等攻击路径。 有验证码防控经验,能够研发新一代验证码并负责其落地运营,有效防控黑产,并应用轨迹和前端校验等技术对批量验证升级或拒绝。
工作职责
1、风控策略实时对抗 主导账号安全(B端和C端盗号/虚假注册)、营销反作弊(群控羊毛党/演唱会黄牛)等业务线的风控策略体系建设,通过策略+模型+AI 的多层防御架构,实现99%+ 的风险拦截准确率和90%+的召回。 基于TB级用户行为数据(设备画像、行为序列、关系网络),构建知识图谱与实时风险评分模型,动态识别新型攻击模式。 2、攻防对抗与技术研究 跟踪黑产最新技术(如模拟器批量注册、OCR绕过验证码、营销反作弊绕过),设计自动化攻击检测告警与防御方案。分析黑产利益链,联动产品/运营团队优化业务流程(如注册流程、营销活动规则),从业务源头降低风险。
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
XGBoost+
[英文] What is XGBoost?
https://www.ibm.com/think/topics/xgboost
XGBoost (eXtreme Gradient Boosting) is a distributed, open-source machine learning library that uses gradient boosted decision trees, a supervised learning boosting algorithm that makes use of gradient descent.
https://www.youtube.com/watch?v=BJXt-WdeJJo
takes a deep dive into one of the most powerful machine learning algorithm, eXtreme Gradient Boosting, using a Jupyter notebook with Python.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
特征工程+
https://www.ibm.com/think/topics/feature-engineering
Feature engineering preprocesses raw data into a machine-readable format. It optimizes ML model performance by transforming and selecting relevant features.
https://www.kaggle.com/learn/feature-engineering
Better features make better models. Discover how to get the most out of your data.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
脚本+
[英文] Scripting language
https://en.wikipedia.org/wiki/Scripting_language
https://zhuanlan.zhihu.com/p/571097954
一个脚本通常是解释执行而非编译。脚本语言通常都有简单、易学、易用的特性,目的就是希望能让程序员快速完成程序的编写工作。
相关职位
社招3年以上技术
1、负责支持滴滴金融信贷的风险算法研发,深刻理解具体的业务场景,设计研发具备良好区分度和解释性的模型; 2、深度挖掘海量平台数据及外部数据,开发有风险区分度的有效变量; 3、负责不同业务线、不同场景下的模型体系的搭建,分层、立体地支持相应场景的业务指标达成;
更新于 2025-10-11
社招3年以上信息技术类
高级/资深算法工程师(国际支付风控方向),base上海/南京 1.支付风险识别与防控 ●负责跨境电商业务中支付风险的全面识别与防控,重点治理欺诈(盗卡、盗账户 友好欺诈)等方面风险,确保支付全链路安全可靠。 ●利用数据分析和机器学习技术,精确识别支付风险,建立有效的风控模型体系。 2.风控模型全链路管理 ●主导支付风控模型的全链路开发与上线工作,包括需求调研、风险探索、方案设计、模型开发、系统集成、部署上线、效果评估、持续优化和监控预警。 ●与产品、工程、业务团队紧密合作,确保风控模型精准全面覆盖业务场景,并能够及时应对市场变化。 3.前沿技术应用与创新 ●深入探索全球各大市场的新型支付作弊行为,利用多模态大数据进行风险评估与预测。 ●应用异常检测、集成学习、强化学习、序列模型、图模型、大规模预训练模型等前沿技术,提升风险识别的准确率和召回率。
更新于 2025-04-16
社招5年以上A181494
1、负责广告客户的信用评估、额度评估、风控等策略; 2、对广告主的消耗进行短中长期的预测,提升预算分配准确性,帮助销售进行绩效管理; 3、对线上广告模型的实验进行离线仿真、提升仿真准确率,帮助提升实验效率、减少实验成本。
更新于 2024-11-15