
神州数码高级AI研发工程师(J21305)
社招全职5年以上地点:北京状态:招聘
任职要求
精通Python/C++,熟练使用TensorFlow/PyTorch等框架,具备高性能代码开发能力 1、深入理解深度学习、传统机器学习算法,熟悉Prompt Engineering、RAG等大模型技术 2、5年以上AI项目全生命周期开发经验,熟悉Docker/Kubernetes部署及性能监控 3、具备垂直领域的AI落地经验,能快速理解业务痛点并提出解决方案 4、强烈的责任心与创新能力,优秀的团队协作与跨部门沟通能力 5、本科及以上学历,计算机、数学、自动化等相关专业
工作职责
负责技术方案设计与落地,根据业务需求设计AI系统架构,推动技术方案从PoC验证到规模化部署 1、优化模型推理效率,应用剪枝、蒸馏等技术降低计算资源消耗 2、负责机器学习/深度学习模型的开发与调优,主导数据预处理、特征工程、模型训练与评估全流程 3、协同产品、数据团队,将业务需求转化为技术实现,输出专利与技术文档 4、跟踪AI前沿技术(如多模态学习、Agent框架),探索创新应用场景
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
学历+
相关职位

社招5年以上
负责技术方案设计与落地,根据业务需求设计AI系统架构,推动技术方案从PoC验证到规模化部署 1、优化模型推理效率,应用剪枝、蒸馏等技术降低计算资源消耗 2、负责机器学习/深度学习模型的开发与调优,主导数据预处理、特征工程、模型训练与评估全流程 3、协同产品、数据团队,将业务需求转化为技术实现,输出专利与技术文档 4、跟踪AI前沿技术(如多模态学习、Agent框架),探索创新应用场景
更新于 2025-10-15
社招5年以上
1. 基于需求实现AI相关产品的全流程开发,包括但不限于AI应用的架构设计、工程实现、系统部署。 2. 核心参与AI Agent开发,基于大语言模型(LLM)、多模态模型或垂直领域模型,开发具备自主决策能力的AI Agent,支持任务分解、工具调用(如API、数据库)和结果反馈。 3. 持续迭代优化Agent相关技术实现和架构设计,包括但不限于CE优化、RAG优化、调度优化、AI可观测性提升等。 4. 跟踪前沿AI技术(如最新Agent框架和最新基模能力等),推动技术持续创新。
更新于 2025-08-26
社招LQA本地化测试
1.负责游戏领域AI翻译、AI策划案生成相关的应用研究与开发,包括但不限于LLM等相关技术; 2.能够基于LLM构建应用,深入掌握模型训练微调的技术与方法; 3.参与项目的需求分析,制定相关的技术解决方案并完成设计开发与落地应用; 4.工作中与团队成员紧密合作,攻克项目应用研究过程中遇到的技术难题; 5.跟踪大模型在业界的最新技术动态与趋势应用方向,将其应用于实际的项目使用中; 6.编写高质量的技术文档,分享技术研究经验与结果。
更新于 2025-06-17