百度自动驾驶端到端模型算法工程师(J89409)
社招全职IDG地点:北京 | 上海状态:招聘
任职要求
-计算机科学、机器人学、控制工程、应用数学等相关专业硕士/博士在读,或具备同等研究经验。 技术能力 -熟练掌握深度强化学习(DRL)、模仿学习(Imitation Learning)、序列决策(POMDP)等方法的理论与实践 -熟悉数据获取、筛选、清洗流程,对数据有深入的认识和理解。有过数据驱动经验的同学优先 -熟悉PyTorch/TensorFlow框架,具备Python/C++编程能力及Linux开发经验 -了解经典决策规划算法(如A*、RRT*、MPC)或控制理论(如车辆动力学模型) -熟悉自动驾驶决策规划任务(行为决策、轨迹生成、交互建模)及数据集(nuPlan、Waymo Motion Dataset)。 -具备多智能体系统、博弈论、不确定性推理(Bayesian Networks)经验者优先
工作职责
-设计基于深度学习的驾驶行为决策模型(如场景理解、交互意图博弈、自车轨迹规划),解决路口通行、变道博弈、礼让行人等复杂交互问题,开发端到端或分层的轨迹规划算法,结合深度学习与经典优化方法,生成平滑、安全、动态可适应的行驶轨迹 -研究强化学习(RL)、递推训练等闭环训练技术,提升自动驾驶系统的拟人化水平和实际路测表现 -研究适用于规划模型的数据驱动流程,通过研究数据、认识数据、开发数据来驱动规划能力的增长 -负责PNC产线的工程架构开发和升级,负责PNC数据feature的开发,包括新字段、数据挖掘和数据画像
包括英文材料
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
Framer Motion+
https://motion.dev/docs/quick-start
Motion is an animation library that's easy to start and fun to master.
https://www.youtube.com/watch?v=znbCa4Rr054
Framer Motion is not only the simplest way to get up and running with animations in React JS, but also one of the most powerful.
智能体+
https://learn.microsoft.com/en-us/shows/ai-agents-for-beginners/
In this 10-lesson course we take you from concept to code while covering the fundamentals of building AI agents.
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
相关职位
社招3年以上自动驾驶
1. 负责理想汽车自动驾驶端到端模型方法研发和工程落地,包括但不限于动静态感知/通用障碍物/障碍物预测决策等端到端模型; 2. 负责设计高性能上限,具备量产能力的端到端模型算法,包括但不限于diffusion、VLM等模型算法; 3. 开发高效离线训练框架,以及可实时运行的在线推理框架,优化模型推理性能,研发模型部署工具链和优化工具; 4. 建立云端数据感知/决策联合标注Pipeline、数据挖掘机制以及难样本分析等工具链,利用影子模型挖掘众包数据,通过数据闭环持续选代模型能力。

社招算法研究
工作职责: 1、参与智能驾驶端到端模型的开发工作,包括但不限于数据处理、模型设计、训练和优化等环节,提升模型在复杂交通场景下的感知、决策和控制能力; 2、结合实际业务需求,对端到端模型进行针对性的优化和调整,确保模型能够准确、高效地处理智能驾驶中的各种任务; 3、参与两段式端到端业务和一端式端到端业务的探索和实践,深入了解不同业务模式的特点和需求,为团队在业务模式选择和优化方面提供有价值的见解和建议;
更新于 2025-10-11
社招自动驾驶
1.负责研发和落实理想汽车下一代自动驾驶端到端VLA大模型算法,确保在车载和云端平台的成功部署。 2.专注于端到端大模型自动驾驶系统的算法开发和优化,包括但不限于端到端模型、多模态大模型等领域。 3.参与大规模自动驾驶数据集的处理、标注及管理,优化大模型以提升自动驾驶系统的性能。 4.持续关注并跟踪自动驾驶及人工智能领域的最新技术进展,进行技术调研及新技术的原型验证。