百度AI 产品研发工程师(J89103)
社招全职ACG地点:上海状态:招聘
任职要求
-本科及以上学历,计算机、人工智能、数据科学等相关专业 -熟悉 RAG 技术栈:文本切分、向量化、索引构建、Prompt 设计等 -理解向量数据的基本原理与应用,具备 embedding、相似度搜索、索引结构(如 HNSW、IVF)等经验 -熟悉思维链(CoT)原理,有多步推理、任务拆解等实践经验 -熟练使用 Python,有 LangChain、Transformers、LlamaIndex、Faiss 等工具经验 -熟悉常见大模型(如 GPT、Qianfan、DeepSeek、Claude、InternLM),并具备调用与落地经验 -有良好的工程实践能力,熟悉 FastAPI / Flask / gRPC 等服务框架 -具备良好的沟通能力和团队协作意识,能够独立推进项目
工作职责
-设计并实现基于大语言模型(LLM)和 RAG 架构的 AI 应用系统,涵盖知识问答、智能对话、Agent 应用等场景 -负责从数据解析、文本切分、embedding、向量化存储到召回与生成的全链路能力建设 -深度参与向量检索引擎的集成与优化 -探索并实现基于思维链(Chain of Thought, CoT)的方法,提升模型复杂任务处理能力 -与产品、算法团队紧密合作,推动 AI 应用从原型到落地部署 -关注业界前沿技术,优化现有系统性能与架构
包括英文材料
学历+
数据科学+
https://roadmap.sh/ai-data-scientist
Step by step roadmap guide to becoming an AI and Data Scientist
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
LangChain+
https://python.langchain.com/docs/tutorials/
New to LangChain or LLM app development in general? Read this material to quickly get up and running building your first applications.
https://www.freecodecamp.org/news/beginners-guide-to-langchain/
LangChain is a popular framework for creating LLM-powered apps.
LlamaIndex+
https://developers.llamaindex.ai/python/framework/getting_started/starter_example/
This tutorial will show you how to get started building agents with LlamaIndex.
https://www.ibm.com/think/tutorials/llamaindex-rag
LlamaIndex is a powerful open source framework that simplifies the process of building RAG pipelines.
Faiss+
https://faiss.ai/index.html
Faiss is a library for efficient similarity search and clustering of dense vectors.
https://huggingface.co/learn/llm-course/en/chapter5/6
In this section we’ll use this information to build a search engine that can help us find answers to our most pressing questions about the library!
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
GPT+
https://www.youtube.com/watch?v=kCc8FmEb1nY
We build a Generatively Pretrained Transformer (GPT), following the paper "Attention is All You Need" and OpenAI's GPT-2 / GPT-3.
FastAPI+
https://fastapi.tiangolo.com/tutorial/
This tutorial shows you how to use FastAPI with most of its features, step by step.
https://realpython.com/get-started-with-fastapi/
FastAPI is a web framework for building APIs with Python.
https://www.youtube.com/watch?v=rvFsGRvj9jo
This video today is a crash course, where we will go through the basics of FastAPI.
Flask+
https://www.youtube.com/watch?v=Z1RJmh_OqeA
Flask is a micro web framework written in Python.
gRPC+
[英文] Introduction to gRPC
https://grpc.io/docs/what-is-grpc/introduction/
An introduction to gRPC and protocol buffers.
相关职位
社招A18050
1、设计和开发面向开发者的AI工具产品,包括代码智能补全、代码生成、代码分析等功能,提升开发效率; 2、构建和优化大规模AI系统核心组件,包括:上下文相关的代码检索系统、高性能的代码生成模型服务、智能代码分析和重构推荐引擎; 3、负责产品实验的全生命周期管理:追踪关键指标并进行数据分析、撰写实验报告并提出改进建议; 4、开发自动化工具提升研发效率:构建模型训练和部署流水线、开发数据收集和处理工具、搭建性能监控和调优平台。
更新于 2024-12-05
社招2年以上MEG
-负责搜索产品的服务端研发工作 -参与搜索整体研发效能和稳定性的提升工作 -负责优化搜索垂类在线检索系统,参与服务架构设计,独立完成业务需求分析和软件设计 -紧跟大模型前沿技术,结合实际业务场景开发落地,实现创新驱动业务增长 -负责AI大模型智能体开发机制建设
更新于 2024-07-31

社招5年以上业务测试
• 负责AI软件产品的质量保障工作,与产品研发团队紧密配合,完成不同应用场景下的软件评测。 • 分析业务产品需求和技术方案,设计端到端的测试场景和测试用例,制定高效合理的测试方案。 • 搭建和维护测试环境,执行测试用例,编写和输出测试报告等相关文档,确保业务产品的质量与进度。 • 发现、定位和跟踪产品缺陷,与研发工程师协作,快速解决问题。 • 构建AI产品的质量体系,提出改进方案,全面把控产品生命周期各阶段的质量,并开发测试工具平台以提高测试工作效率
更新于 2024-11-12