快手高级数据研发工程师(数据应用)-【数据平台】
社招全职D11761地点:北京状态:招聘
任职要求
1、较为丰富的数据仓库及数据平台架构经验,期望通过对业务的深入理解,进行数据仓库、数据体系和数据价值的建设和优化; 2、有从事分布式数据存储与计算平台应用开发经验,熟悉Hive,Kafka,Spark,Storm,Hbase,Flink 等相关技术并有相关开发经验; 3、有系统化的思维和工程化的能力,有工程化落地的经验尤佳; 4、有较丰富的应用算法开发经验,对机器学习和AI有一定的了解。
工作职责
1、建设全站的基础数据能力,提供丰富、稳定的短视频社区公共基础数据,探索更多数据能力的增量价值; 2、通过业务数据需求,提供数据采集埋点方案,跟进埋点全流程,交付结果,推进埋点质量相关建设; 3、支持消费、本地生活等业务的数据建设,通过数据+算法+产品,赋能业务,提供全链路、可分析、可复用的数据能力,提供更直观、更具分析指导性的产品化能力; 4、建设公司层面的核心数据资产,与业务场景深度结合,为社区服务提供数据服务化、数据业务化的数据&产品解决方案; 5、建设全站数据治理和管理体系,结合业务+元数据+技术,保障公司各个业务服务的数据质量和产出稳定。
包括英文材料
数据仓库+
https://www.youtube.com/watch?v=9GVqKuTVANE
From Zero to Data Warehouse Hero: A Full SQL Project Walkthrough and Real Industry Experience!
https://www.youtube.com/watch?v=k4tK2ttdSDg
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
HBase+
[英文] HBase Tutorial
https://www.tutorialspoint.com/hbase/index.htm
HBase is a data model that is similar to Google's big table designed to provide quick random access to huge amounts of structured data. This tutorial provides an introduction to HBase, the procedures to set up HBase on Hadoop File Systems, and ways to interact with HBase shell.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
相关职位
社招2年以上D6269
1、负责直播数据仓库的建设,构建各垂直应用的数据集市; 2、定义并开发业务核心指标数据,负责垂直业务数据建模; 3、根据业务需求,提供大数据计算应用服务,并持续优化改进; 4、参与直播数据平台的开发工作,支持业务需求。
更新于 2025-03-07
社招
1、负责核心业务域数据体系的规划和建设,通过数据产品和数据服务等方式,高效支撑业务场景的数据需求 2、深度理解业务,通过对业务策略和痛点的分析,制定系统性端到端的数据解决方案并落地 3、负责数据资产建设、数据质量与稳定性管理,构建共享融通的数据平台,让数据标准更规范、数据获取更高效
更新于 2025-05-23
社招5-10年D6264
1、建设全站的基础数据能力,提供丰富、稳定的短视频社区公共基础数据,探索更多数据能力的增量价值; 2、支持运营方向各类数据专题体系的建设,通过数据+算法+产品,赋能业务,提供全链路、可分析、可复用的数据能力,提供更直观、更具分析指导性的产品化能力; 3、建设公司层面的核心数据资产,与业务场景深度结合,为社区服务提供数据服务化、数据业务化的数据&产品解决方案; 4、建设全站数据治理和管理体系,结合业务+元数据+技术,保障公司各个业务服务的数据质量和产出稳定。
更新于 2025-09-29