小红书PE策略工程运营
校招全职模型标注地点:北京 | 武汉状态:招聘
任职要求
岗位要求: 1. 硬性能力 - 熟练掌握Python,具备高质量代码实践能力。 - 至少掌握一种深度学习框架(PyTorch/TensorFlow),有Transformer模型实战经验。 - 能通过代码直观呈现技术价值(需提交GitHub技术博客等作品集)。 2. 核心特质 - 强探索驱动力:对AI技术本质有好奇心,主动提出实验假设并验证。 - 工程思维:拒绝"实验室代码",追求可扩展、可维护的实现方案。 - 结果可视化能力:善用工具将抽象技术转化为可交互演示。 3. 加分项 - 在Hugging Face、Kaggle等平台发布过开源项目或模型。 - 熟悉LangChain/LLamaIndex等AI工程框架。 - 有Prompt优化、模型微调(LoRA等)经验。
工作职责
岗位职责: 1. 前沿技术探索 - 跟踪语音、文本、多模态大模型、multi-agent等领域最新论文与技术动态,复现关键算法并输出实验报告。 - 设计创新性实验方案,探索模型在文本生成、多模态理解等场景的应用潜力。 - 构建端到端Demo,验证技术可行性(如RAG系统、Agent工作流等) 2. 工程代码开发 - 参与轻量化工具开发,提升团队探索效率(如自动化实验评估脚本) - 协助工程同学优化实验代码性能,确保代码可读性、可复现性及模块化设计
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
GitHub+
[英文] GitHub Learn
https://learn.github.com/
Discover a wide range of beginner-friendly tutorials, hands-on learning, and expert-led lessons.
Kaggle+
[英文] Kaggle Learn
https://www.kaggle.com/learn
Gain the skills you need to do independent data science projects.
LangChain+
https://python.langchain.com/docs/tutorials/
New to LangChain or LLM app development in general? Read this material to quickly get up and running building your first applications.
https://www.freecodecamp.org/news/beginners-guide-to-langchain/
LangChain is a popular framework for creating LLM-powered apps.
LlamaIndex+
https://developers.llamaindex.ai/python/framework/getting_started/starter_example/
This tutorial will show you how to get started building agents with LlamaIndex.
https://www.ibm.com/think/tutorials/llamaindex-rag
LlamaIndex is a powerful open source framework that simplifies the process of building RAG pipelines.
Prompt+
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
A prompt is a natural language request submitted to a language model to receive a response back.
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/prompt-engineering
These techniques aren't recommended for reasoning models like gpt-5 and o-series models.
https://www.youtube.com/watch?v=LWiMwhDZ9as
Learn and master the fundamentals of Prompt Engineering and LLMs with this 5-HOUR Prompt Engineering Crash Course!
相关职位
社招2年以上运营-产品运营
1.深入理解实际业务场景,和各业务线充分沟通实际需求,搭建自动标注体系,编写PE和workflow程序,实现标注数据的规模生成和筛选。 2.负责prompt生产过程的制定以及不断迭代优化(包含数据分析、调优prompt,重新定义场景和目标等) 3.能通过PE代码完成数据预处理、分析和清洗,探索更高效的数据生产方式 4.通过输出和带教,提升数据团队对技术和大预言模型的了解,教授应用技巧,推动业务达成目标
更新于 2025-08-11
社招3年以上审核策略
1、根据审核需求,设计和构建合适的Prompt模型,进行实验和测试,并不断优化模型的性能和效果; 2、和算法、产品团队紧密配合,调试和引导模型的提示策略,确保生成的结果符合需求目标; 3、参与设计和实施Prompt工程的规则,将抽象概念转化为具体、有效的提示语,并且能够推动在审核中应用落地; 4、参与PE的迭代与更新,不断完善模型的性能和效果,确保其准确性。
社招3年以上审核策略
1、负责大语言模型的价值观对齐,配合工程师设计模型优化方案,确保大模型输出内容对用户有益、无害、诚实; 2、有商业化审核或电商审核的业务经验 3、结合业内最新的大模型技术,制定方案,对整体的审核效果负责。