高德地图多模态大模型算法工程师-交通智能-APP平台业务
任职要求
1. 机器学习相关专业的研究生或以上学历,交通或者时空序列或多模态大模型等相关专业方向优先; 2. 熟练掌握一种常用的深度学习框架(pytorch、T…
工作职责
团队介绍: 高德交通智能团队寻找AI造梦师!加入极客天团,用代码重塑未来出行 团队故事: 我们是高德地图的的硬核极客天团,过去四年连续解锁交通科技树: ✓ 2021年 全球首个分钟级交通事件检测引擎(让堵车预警快过刷朋友圈) ✓ 2022年 红绿灯倒计时黑科技(拯救千万路怒症的神级操作) ✓ 2023年 V2X车车对话系统(让汽车学会"社牛"沟通) ✓ 2024年 AI领航红绿灯(比驾校教练更懂路的老司机) 现在,我们正在构建智能交通宇宙,等你来编写核心算法剧本! 岗位职责包括但不限于: 1. 探索交通时空数据(多模态数据)的通用表征方法,支撑交通下游的识别和预测等业务场景; 2. 探索新技术(多模态建模、LLM等)在交通领域的应用,为下一代交通大模型做准备; 3. 参与核心出行数据(如红绿灯、路况等)相关机器学习算法和数据挖掘算法的研发及技术攻关。
团队介绍: 高德地图为您导航,前方路口请“左转”,我们是高德地图交通&行中智能团队。 我们的使命是基于高德海量高质的数据,最前沿的AI算法,最可靠的工程架构,打造有温度、有惊喜、科技感十足的智能出行体验; 在这里,我们一起建设应对超大业务规模,超高业务复杂度的高效、可靠、鲁棒的技术架构;一起用最前沿的机器学习、深度学习、AI算法探索导航领域最具挑战性的行业难题;一起用最尖端的AIGC、LLM/LVM、多模态理解与生成、Agent等技术,打造全新的出行交互体验; 团队简单直接、有情有义、温暖有爱,欢迎加入,一起用技术驱动创新,为海量用户护航! 职位职责包括但不限于: 基于前沿的AIGC、LLM/LVM、MLLM多模态理解与生成、AI Agent等技术,实现高德地图导航过程全场景、全时空、多模态的内容理解/生成以及智能交互,不断提升用户的出行质量和体验。
钉钉正在全面拥抱多模态AI,正在致力于将视觉大模型、边缘智能与实时视频分析深度融合,赋能智能零售、智慧工厂、智能交通等多个行业。我们拥有强大的工程化能力和创新研发氛围,期待志同道合的技术精英加入,共同推动视觉AI落地千行百业。 我们正在寻找在视觉AI领域具备真正工程化落地经验的技术人才,你将参与公司核心视觉AI系统的研发与优化,负责从算法设计、模型训练到高性能部署、大规模流式处理的全链路技术实现。具体职责包括: 1. 视觉大模型与算法开发 ○ 负责视觉大模型的后训练(Post-training)优化,包括微调、蒸馏、量化、剪枝等,提升模型在实际场景中的泛化能力与效率。 ○ 开发端侧视觉大模型,针对边缘设备进行轻量化设计与部署。 ○ 设计并实现传统CV算法(如目标检测、跟踪、姿态估计、图像增强等)与深度学习模型的融合方案。 ○ 构建视觉嵌入生成与特征提取模型,支持跨模态检索、相似性匹配等应用。 ○ 能根据实时性、性能、成本等多维约束,设计合理的算法组合与技术路线,实现最优落地效果。 ○ 在行业专家的指导下完成高质量的数据清洗和标注,建立多行业多场景的视觉AI评估框架 2. 高性能推理部署与优化 ○ 基于不同算法特性,选择并实施高并发、大吞吐的推理部署方案,熟练使用以下技术栈: ■ 推理框架:Triton Inference Server、ONNX Runtime、TensorRT ■ 部署平台:KServe + Triton / KServe + vLLM ○ 实现模型的动态批处理、自适应推理、低延迟响应,优化端到端服务性能。 ○ 负责模型格式转换、算子优化、硬件适配(GPU/TPU/NPU)及性能调优。 3. 分布式视频流处理系统构建是加分项 ○ 构建高可用、可扩展的分布式视频流处理 pipeline,支持多路视频流的实时接入与处理。 ○ 基于 Kafka + Flink 实现视频帧的流式消费、分发与状态管理。 ○ 完成视频数据的实时AI推理、结果聚合、元数据落盘,并与下游系统无缝集成。 ○ 保障系统在高负载下的稳定性、容错性与可监控性。 4. 跨团队协作与技术沉淀 ○ 与产品、业务、后端及硬件团队紧密协作,推动AI能力在真实业务场景中的落地。 ○ 输出技术文档、最佳实践,参与构建公司级AI工程化平台与工具链。
我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 1. 多模态大模型研发与应用 负责多模态大模型的核心架构设计,研究并实现图片、视频、文本等跨模态特征对齐、融合与表征学习方法,负责多模态大模型的数据准备、高效训练(包括但不限于预训练、SFT、强化学习等)、推理加速等。 2. 模型优化与小型化部署 负责多模态大模型的轻量化设计、压缩与加速,确保模型在端侧设备上的高效运行。 针对高德地图的实际业务场景,优化模型性能,平衡精度与效率。 3. 创新性研究与落地 跟踪端侧生成式AI(Edge Generative AI)、强化学习(PPO、GRPO等)、智能Agent等前沿技术,探索多模态大模型在自动驾驶、智能导航等领域的潜在应用。 将研究成果快速转化为实际产品功能,推动技术创新与业务增长。
我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型技术在端到端自动驾驶的应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、多模态大模型的训练及调优、BEV感知、基于深度学习/强化学习的规划控制、RLHF、驾驶场景视频生成等领域具备丰富且有独创性的研究经历。 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等。 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等。 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用。 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力。 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。