阿里巴巴1688-算法专家-杭州滨江
社招全职1年以上地点:杭州状态:招聘
任职要求
职位要求 1、计算机或数学或统计相关专业,具有1年以上的工作经验 2、具备机器学习、深度学习、图神经网络、运筹优化算法经验;至少掌握3种以上相关算法包括但不限于gbdt、FM、LR、causal forest、GCN等算法;了解算法基本原理,具有数据挖掘和算法应用能力 3、熟练掌握SQL、R、Python、Java以及相关进行分析的工具或Hadoop/Spark/ODPS等大数据分布式平台,熟悉常用的机器学习库比如scikit-learn、xgboost、Spark MLLib等; 4、具有优秀的分析能力、算法设计和解决问题的能力,对工作上的挑战充满激情; 5、具备较好的自我驱动和抗压能力,良好的沟通能力和团队合作精神,有一定的组织协调能力 具备以下条件者优先: 在以下一个或多个领域中有丰富的算法背景:AIGC、广告优化、营销推荐、因果推断、增长黑客、用户画像
工作职责
1688主要负责阿里集团1688电商相关的业务。我们将致力于通过机器学习、aigc、知识图谱等前沿的算法技术,帮助业务识别的增长痛点和机会点,设计算法框架,完成用户图谱、个性化出价、场景推荐、命名实体识别、因果推断、标签预测、策略生成等技术目标 1、深入理解业务需求和痛点,完成算法设计(机器学习、深度学习、图神经网络、aigc算法 )特征开发、指标设计、上线评估 2、结合广告投放系统,识别渠道目标人群、预估客户价值、优化多目标出价,完成投放策略迭代 3、负责用户标签预测、用户分层和画像搭建,完成个性化选品推荐、营销算法优化和效果评估 4、运用大模型、aigc相关算法,帮助实现图文和视频素材的自动化生成 5、利用BART、causal forest、upliftRF、贝叶斯推断等因果推断算法,完成用户增长归因判断和业务策略推演
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
运筹优化+
https://medium.com/gousto-engineering-techbrunch/an-introduction-to-operations-research-5a9e898b6c60
Operations research (OR) is a scientific approach to determining the optimal solution to a defined business problem.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
GBDT+
https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt
Like bagging and boosting, gradient boosting is a methodology applied on top of another machine learning algorithm.
https://scikit-learn.org/stable/modules/ensemble.html
Ensemble methods combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
R+
[英文] R Tutorial
https://www.w3schools.com/r/
R is often used for statistical computing and graphical presentation to analyze and visualize data.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Hadoop+
https://www.runoob.com/w3cnote/hadoop-tutorial.html
Hadoop 为庞大的计算机集群提供可靠的、可伸缩的应用层计算和存储支持,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集,并且支持在单台计算机到几千台计算机之间进行扩展。
[英文] Hadoop Tutorial
https://www.tutorialspoint.com/hadoop/index.htm
Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
XGBoost+
[英文] What is XGBoost?
https://www.ibm.com/think/topics/xgboost
XGBoost (eXtreme Gradient Boosting) is a distributed, open-source machine learning library that uses gradient boosted decision trees, a supervised learning boosting algorithm that makes use of gradient descent.
https://www.youtube.com/watch?v=BJXt-WdeJJo
takes a deep dive into one of the most powerful machine learning algorithm, eXtreme Gradient Boosting, using a Jupyter notebook with Python.
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
相关职位
社招3年以上
负责1688广告域的竞价算法设计和优化,包括并不限于: 1. 负责广告预算分配机制的优化; 2. 负责多种广告竞价算法的优化,如CPT/CPM/CPC/CPA等; 3. 负责对广告投放环境进行建模,预估不同预算规模以及出价水平下的广告投放效果; 4. 负责广告投放关键词进行优化,通过算法动态调整不同关键词的报价,控制广告成本; 5. 负责广告计费机制的优化,熟悉一价/二价扣费等概念; 6. 负责程序化广告投放效果分析,结合AI智能体等技术对投放策略进行自动优化。
更新于 2025-07-29
社招5年以上研发类
1. 核心技术攻关:主导基于视觉信息的3D内容生产,突破高质量内容、高效率生产等技术瓶颈; 2. 前沿技术的场景化探索:研究3D视觉方向(包含但不限于:三维重建与生成、新视角合成、空间感知)的前沿技术趋势,探索技术场景化的路径,结合业务需求孵化创新应用。
社招5年以上研发类
1.EIS算法开发与优化:设计并实现基于IMU传感器和视觉特征(如光流)的多传感器融合防抖算法,优化运动估计模型和帧间补偿算法(如网格变形、自适应裁剪),解决复杂场景下的防抖问题(如剧烈运动、低光照、运动模糊); 2.实时性与性能优化:将算法部署到嵌入式平台,优化计算延迟和内存占用,使用NEON指令集、GPU加速(OPENCL/VULKAN)或硬件加速(DSP/NPU)提升实时性; 3.画质增强与协同处理:与ISP团队协作,优化端到端成像流水线; 4.技术预研与创新:跟踪学术界和工业界最新进展(如基于深度学习的EIS)。