
商汤机器学习算法工程师(具身智能方向)
任职要求
1. 计算机科学、人工智能、软件工程等相关专业背景 2. 在深度学习方面有相关经验和深入理解(监督学习/表示学习/生成式模型/多模态模型/RLHF) 3. 熟练掌握pyt…
工作职责
1. 研发基于神经网络的机器人操作控制能力 2. 负责AI算法和多模态数据的相关软件基础平台搭建 3. 与控制工程师紧密合作,参与避障算法和全身控制等相关工作 4. 开发数据加载、数据处理、模型评测、模型加速等相关软件工具链 5. 持续跟踪业界最新进展,编写相关技术文档
1. 负责开发和优化灵巧手grasp相关的强化学习方法。 2. 设计和实施强化学习策略,分析实验数据,评估算法表现,解决机器人操作的sim2real问题 3. 跟进最新的灵巧操作研究趋势,为团队带来新的思路和解决方案。
该岗位分3个方向,请同学们仔细阅读岗位JD,选择适合自己的方向进行投递。 【机器人算法工程师】(规划&控制方向) 职位描述: 1、负责机器人运动学、动力学建模,并实现机器人运动或者路径规划,运动控制等算法; 2、有机器人导航, 机械手臂抓取, 液压控制等相关机器人项目经验; 3、对接硬件、产品等职能同事,实现机器人整体功能的实现和调试; 4、负责算法的优化、移植和产品化。 【机器人算法工程师】(感知&建模方向) 职位描述: 1、负责工程机械智能化场景中基于深度学习激光雷达点云的3D目标检测、分割、跟踪等算法的研发及迭代优化; 2、参与工程机械智能化项目中的感知研发,开发并优化适用于复杂工况(如施工场景、恶劣天气条件)的点云处理和感知算法。 3、推动感知算法在工程机械智能化产品中的落地与优化提升,确保算法的高效运行和实时性; 4、结合工程机械的实际需求,对激光雷达点云数据进行预处理、特征提取和分析,为后续的感知任务提供高质量的数据支持; 5、参与多传感器融合算法的研发,探索激光雷达与其他传感器(如摄像头、IMU等)的协同工作模式,提高工程机械的环境感知能力; 6、跟踪和研究点云感知领域的最新技术动态,将其应用到实际项目中,保持公司技术的领先性。 【机器人算法工程师】(具身智能方向) 职位描述: 1、深入研究机器人多模态大模型(VLA模型)的理论及应用,包括预训练、微调策略、以及效果优化; 2、负责基于大模型的决策控制算法设计,探索前沿模仿学习(如 ACT、DP)及 Model-Based RL 算法在机器人上的研究与创新; 3、基于大模型开发创新算法框架,探索具身智能机器人实际场景中的应用方向,如 RT 系列等; 4、负责最新文献调研,跟踪多模态模型与机器人领域结合的技术前沿,提出具有创新性的研究思路; 5、参与并主导自定义数据集构建、特定任务的模型训练与评估; 6、推动具身智能系统算法在复杂场景下的理论研究,探索工程机械场景智能化解决方案。
1. 路径规划 ‒ 开发适用于多种场景(如机器人导航、自动驾驶、无人机等)的路径规划算法; ‒ 实现经典和前沿的全局及局部路径规划方法(如 A*、Dijkstra、RRT、DWA 等),优化路径规划的效率和鲁棒性; ‒ 处理动态环境中的路径生成和调整,解决复杂场景下的避障问题。 2. 行动决策 ‒ 研究并实现具身智能体的行动决策算法,设计任务分解和行为选择的逻辑; ‒ 基于行为树(Behavior Tree)、有限状态机(FSM)等方法,构建模块化的决策框架; ‒ 开发多智能体协作与竞争的行动决策模型,支持复杂交互任务的执行。 3. 强化学习(Reinforcement Learning,RL) ‒ 针对具身智能场景(如机械臂控制、机器人动态避障、导航等),设计强化学习的 reward 函数和训练策略; ‒ 实现主流深度强化学习算法(如 DQN、DDPG、PPO、SAC 等),解决高维连续控制与探索问题; ‒ 优化强化学习模型的收敛速度和鲁棒性,提升算法在实际场景中的表现。 4. 模仿学习(Imitation Learning,IL) ‒ 通过专家示范数据(如轨迹、动作序列)训练智能体,实现模仿人类/智能体行为; ‒ 应用行为克隆(Behavior Cloning, BC)、逆强化学习(Inverse Reinforcement Learning, IRL)等技术解决稀疏奖励问题; ‒ 结合模仿学习与强化学习,提升智能体在复杂任务中的学习和泛化能力。 5. 算法优化与工程实现 ‒ 优化算法的计算效率和资源占用,适配实时性要求 ;‒ 在仿真环境(如 Gazebo、PyBullet、Mujoco 等)和真实设备中验证算法性能; ‒ 配合嵌入式团队完成算法在终端设备上的部署与优化。 6. 技术研究与创新 ‒ 跟踪具身智能领域的前沿算法进展,探索新技术的实际应用; ‒ 研究多模态感知与决策(如视觉、语音、触觉)的融合方法,提升智能体的环境理解与行动能力; ‒ 参与长期自主学习、在线学习和自适应学习系统的设计与开发。
1. 探索研究具身智能领域的多模态大模型、世界模型、生成式模型、AIGC等人工智能前沿技术; 2.探索大规模多模态理解与生成交织的基础模型,并进行极致系统优化;数据建设、指令微调、偏好对齐、RLHF、模型优化;提升数据合成、模型推理、规划能力,构建全面客观准确的评测体系,探索提升大模型能力; 3. 探索突破包括而不限于多模态大模型、端到端VLA模型、视觉COT与Agent在内的多模态模型、世界模型; 4. 通过预训练或SFT,使用生成式模型技术能力对现实世界的各类环境进行建模,提供多模态交互探索的基本能力,推动应用落地,研发以人工智能技术为核心的新技术、新产品。