理想汽车【自动驾驶】高级端到端模型算法专家
社招全职3年以上自动驾驶地点:北京状态:招聘
任职要求
1.有3年以上自动驾驶研发经验,熟悉自动驾驶决策规划方法,有端到端研发和部署经验者优先; 2.熟悉图像/视频生成相关的diffusion算法如DDPM/flow matching/dpm solver等,或者机器人与LLM领域相关的强化学习算法如PPO/RLHF等; 3.深入了解数据结构、算法、并行编程、代码优化和大规模数据处理等相关知识;至少精通C/C++或Python编程,有ACM经验者优先; 4.有计算机视觉及模式识别领域顶会(CVPR/ICCV/ECCV/ICML/NeurIPS)或顶刊(TPAMI/IJCV/TIP)者优先;有顶级学术比赛成果或实际工程项目经验者优先。
工作职责
1.负责理想汽车自动驾驶端到端模型方法研发和工程落地,包活动静态感知/通用障碍物/障碍物预测决策等端到端模型; 2.开发高效离线训练框架,以及可实时运行的在线推理框架,优化模型推理性能,研发模型部署工具链和优化工具; 3.建立云端数据感知/决策联合标注Pipeline、数据挖掘机制以及难样本分析等工具链,利用影子模型挖掘众包数据,通过数据闭环持续选代模型能力。
包括英文材料
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
ICML+
https://icml.cc/
NeurIPS+
https://neurips.cc/
相关职位
社招4年以上技术类-算法
1、设计并实现高精度定位的多模态数据融合方案(如GPS、IMU、视觉等),提升环境感知与定位鲁棒性。 2、开发端到端的定位及轨迹预测算法,结合自回归模型(AR)或时序建模技术,实现复杂交通场景下的高可靠性决策。 3、探索大模型(如Transformer、GNN)在自动驾驶中的应用,设计基于强化学习(RL)的决策优化框架,提升动态环境下的安全性和效率。 4、研究并实现基于强化学习的运动规划算法,结合奖励函数设计与策略优化。 5、将算法部署至实际终端,完成实时性、稳定性优化,推动算法在真实场景中的闭环迭代。 6、技术攻坚与创,跟踪学术界与工业界最新进展(如BEV感知、diffusion policy、模仿学习等),主导关键技术预研与原型开发。
更新于 2025-10-16
社招3年以上自动驾驶
1. 负责理想汽车自动驾驶端到端模型方法研发和工程落地,包括但不限于动静态感知/通用障碍物/障碍物预测决策等端到端模型; 2. 负责设计高性能上限,具备量产能力的端到端模型算法,包括但不限于diffusion、VLM等模型算法; 3. 开发高效离线训练框架,以及可实时运行的在线推理框架,优化模型推理性能,研发模型部署工具链和优化工具; 4. 建立云端数据感知/决策联合标注Pipeline、数据挖掘机制以及难样本分析等工具链,利用影子模型挖掘众包数据,通过数据闭环持续选代模型能力。
社招自动驾驶
1. 负责自动驾驶端到端模型的设计与研发; 2. 参与、负责关键算法的设计、实现、优化,如 静态感知、导航地图融合、轨迹预测等; 3. 参与、负责训练及验证数据集的构建,以数据驱动方式持续优化模型能力。