理想汽车【自动驾驶】高级端到端算法工程师
社招全职自动驾驶地点:北京状态:招聘
任职要求
1. 计算机视觉、机器学习相关专业,有自动驾驶研发经验者优先; 2. 较强的算法实现能力,至少熟练使用PyTorch, TensorFlow等深度学习框架其中之一; 3. 熟悉多个领域者优先,如视觉感知、预测、轨迹优化; 4. 训练过复杂模型者优先,如多传感器融合的 BEV 模型,结构化信息与非结构化信息融合; 5. 具有优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情; 6. 对新技术有持续热情,善于快速学习,个性乐观,善于与人沟通合作。
工作职责
1. 负责自动驾驶端到端模型的设计与研发; 2. 参与、负责关键算法的设计、实现、优化,如 静态感知、导航地图融合、轨迹预测等; 3. 参与、负责训练及验证数据集的构建,以数据驱动方式持续优化模型能力。
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
相关职位
社招3年以上自动驾驶
1. 负责理想汽车自动驾驶端到端模型方法研发和工程落地,包括但不限于动静态感知/通用障碍物/障碍物预测决策等端到端模型; 2. 负责设计高性能上限,具备量产能力的端到端模型算法,包括但不限于diffusion、VLM等模型算法; 3. 开发高效离线训练框架,以及可实时运行的在线推理框架,优化模型推理性能,研发模型部署工具链和优化工具; 4. 建立云端数据感知/决策联合标注Pipeline、数据挖掘机制以及难样本分析等工具链,利用影子模型挖掘众包数据,通过数据闭环持续选代模型能力。
社招CSIG技术
1.负责开发和优化自动驾驶端到端算法及系统,整合感知、预测、建图、决策等各传统模块,并负责端到端算法模型的车端移植与模块部署; 2.设计、开发和优化自动驾驶端到端算法,分阶段实现感知端到端、感知预测端到端、感知决策端到端三阶段算法研究; 3.开发、维护车端基于ROS2通信的端到端自动驾驶工程链路,提升车端识别准召、FPS、资源开销等性能指标; 4.与团队合作,进行算法性能评估和优化,对接上下游模块,提供满足下游需求的算法输出。
更新于 2025-05-26
社招3年以上自动驾驶
1.负责自动标注算法研发,实现多模态数据的联合生成与标注,涉及算法有点云分割&检测/动静态BEV/OCC/VLM等,支撑端到端/VLA项目落地; 2.负责云端VLM/VLA算法研发,并落地车云端; 3.负责重建生成算法在自动驾驶场景的研发,应用于静态标注和数据合成业务中; 4.探索新的模型训练方式在自动驾驶场景的落地,包括自监督/弱监督/增量训练/强化学习/数据配比方案等。 5.跟踪最新的大模型和人工智能发展动态,持续迭代更新多模态大模型方案; 6.主导关键技术的专利撰写和论文发表工作。