logo of xpeng

小鹏汽车大模型部署工程师/专家

社招全职地点:北京状态:招聘

任职要求


具备扎实的大模型部署与优化经验,有高性能计算背景者优先;
 精通 PythonC++ 编程语言,具备良好的工程习惯,熟悉常用的数据结构算法;
 深入理解模型量化技术原理,熟练掌握 PyTorchTensorRTONNX Runtime 等技术栈;
 具备快速学习能力,能够在快节奏的环境中高效独立工作。

工作职责


负责自动驾驶端侧大模型的部署与优化工作;
研究并落地大模型优化相关技术,包括模型量化、算子优化等,推动在自动驾驶业务中的应用;
参与模型部署与优化工具链的研发工作;
与算法团队协同配合,完成从模型训练到部署的全链路优化,确保软硬件之间的高效协同。
包括英文材料
大模型+
Python+
C+++
数据结构+
算法+
PyTorch+
TensorRT+
ONNX+
相关职位

logo of amap
社招3年以上技术类-算法

我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 1. 多模态大模型研发与应用 负责多模态大模型的核心架构设计,研究并实现图片、视频、文本等跨模态特征对齐、融合与表征学习方法,负责多模态大模型的数据准备、高效训练(包括但不限于预训练、SFT、强化学习等)、推理加速等。 2. 模型优化与小型化部署 负责多模态大模型的轻量化设计、压缩与加速,确保模型在端侧设备上的高效运行。 针对高德地图的实际业务场景,优化模型性能,平衡精度与效率。 3. 创新性研究与落地 跟踪端侧生成式AI(Edge Generative AI)、强化学习(PPO、GRPO等)、智能Agent等前沿技术,探索多模态大模型在自动驾驶、智能导航等领域的潜在应用。 将研究成果快速转化为实际产品功能,推动技术创新与业务增长。

更新于 2025-09-05
logo of amap
社招技术类-开发

1、大模型关键技术突破,构建AI应用开发平台核心竞争力,支撑共享引擎大模型业务的快速推进和迭代。 2、洞察业界AI大模型应用开发平台的前沿技术,跟踪业界与学术界最新研究动态,围绕大模型应用的高成功率、高执行效率、低门槛,持续探索和突破大模型应用平台创新技术。 3、深度参与深度学习大模型产品研发,工程优化和应用过程中的技术落地,重点关注大模型部署、对齐、模型评估、推理优化加速等

更新于 2025-06-20
logo of amap
社招1年以上技术类-算法

我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型及端到端模型在车端导航及定位应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、BEV环境感知、多模态融合、强化学习等领域具备丰富且有独创性的研究经历; 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等; 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等; 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和复杂场景泛化能力; 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。

更新于 2025-09-25
logo of amap
社招3年以上技术类-算法

我们是谁? 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现厘米级高精地图、实时三维重建、多模态感知等核心技术的引擎,持续突破自动驾驶、AR导航、智慧交通等领域的技术边界。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 团队主要聚焦多模态大模型技术在端到端自动驾驶的应用,我们期待你的工作将覆盖以下至少一个技术方向即可: 1. 在端到端自动驾驶、多模态大模型的训练及调优、BEV感知、基于深度学习/强化学习的规划控制、RLHF、驾驶场景视频生成等领域具备丰富且有独创性的研究经历。 2. 探索多模态大模型在下游任务中的技术能力,包括但不限于图文对齐/识别、跨模态理解生成、多模态检索、VLM端到端自动驾驶、世界模型等。 3. 了解大模型模型的训练/微调/推理加速方法,包括但不限于模型结构调优、训练效率提升、高效低成本微调、Muti-token推理,模型部署加速等。 4. 参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用。 5. 负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力。 6. 设计和实现端到端自动驾驶模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。

更新于 2025-10-15