TCL高级SLAM算法工程师(激光雷达与具身导航方向)
社招全职3年以上研发技术类地点:宁波状态:招聘
任职要求
任职要求 核心技术能力 1. SLAM方向: - 精通激光SLAM算法(如slamtoolbox等),对单线激光雷达(2D LiDAR)有实际项目经验; - 熟悉点云处理、运动畸变校正、闭环检测等关键技术; 2. 具身导航方向: - 熟悉视觉端到端导航(VLN, Vision-and-Language Navigation) 或模仿学习强化学习导航框架; - 具备基于数据驱动/混合泛式的导航算法开发经验; 3. 神经网络感知: - 熟练使用PyTorch/TensorFlow,具备基于CNN/Transformer的视觉感知模型开发能力; - 有目标检测(YOLO、DETR)、语义分割(Mask R-CNN)等实际项目经验; 4. 空间计算能力: - 掌握三维重建(TSDF、NeRF)、场景表示学习(场景图、特征地图)等技术; - 熟悉空间推理、路径规划(A*、D* Lite)等算法。 基础要求 - 硕士及以上学历,计算机、机器人、自动化等相关专业; - 3年以上SLAM/导航算法开发经验; - 熟练使用C++/Python,熟悉Linux/ROS开发环境; - 具备较强的数学基础(线性代数、概率论、优化方法)。
工作职责
岗位职责 1. 负责基于单线激光雷达的SLAM系统开发、优化与部署,实现高精度定位与建图; 2. 设计并实现具身智能导航(Embodied Navigation)解决方案,重点研究视觉端到端导航技术路径; 3. 开发基于神经网络的环境感知模型(如语义分割、目标检测、场景理解等),支撑导航决策; 4. 构建空间计算能力(三维重建、场景表示、拓扑地图生成等),提升机器人空间认知能力; 5. 推动算法在机器人、自动驾驶或智能体等场景的落地,解决实际业务中的定位、导航问题。
包括英文材料
SLAM+
https://docs.mrpt.org/reference/latest/tutorial-slam-for-beginners-the-basics.html
[英文] SLAM for Dummies
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
A Tutorial Approach to Simultaneous Localization and Mapping
https://ouster.com/insights/blog/introduction-to-slam-simultaneous-localization-and-mapping
SLAM is an essential piece in robotics that helps robots to estimate their pose – the position and orientation – on the map while creating the map of the environment to carry out autonomous activities.
[英文] What Is SLAM?
https://www.mathworks.com/discovery/slam.html
How it works, types of SLAM algorithms, and getting started
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
CNN+
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
Convolutional Neural Network (CNN) forms the basis of computer vision and image processing.
[英文] CNN Explainer
https://poloclub.github.io/cnn-explainer/
Learn Convolutional Neural Network (CNN) in your browser!
https://www.deeplearningbook.org/contents/convnets.html
Convolutional networks(LeCun, 1989), also known as convolutional neuralnetworks, or CNNs, are a specialized kind of neural network for processing data.
https://www.youtube.com/watch?v=2xqkSUhmmXU
MIT Introduction to Deep Learning 6.S191: Lecture 3 Convolutional Neural Networks for Computer Vision
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
R+
[英文] R Tutorial
https://www.w3schools.com/r/
R is often used for statistical computing and graphical presentation to analyze and visualize data.
学历+
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
ROS+
https://www.youtube.com/watch?v=92Zz5nnd41c&list=PLk51HrKSBQ8-jTgD0qgRp1vmQeVSJ5SQC
https://www.youtube.com/watch?v=HJAE5Pk8Nyw
Ready to learn ROS2 and take your robotics skills to the next level?
https://www.youtube.com/watch?v=MWKnMPX0Yjg&list=PLU9tksFlQRircAdEplrH9NMm4WtSA8yzi
Do you want to know more about ROS the Robot Operating System?
相关职位
校招
1、参与SLAM(同步定位与地图构建)、多传感器融合、地图构建以及定位算法的研究和开发。 2、协助在嵌入式平台上实现和优化SLAM算法,并推动其在产品中的应用。 3、学习并探索激光SLAM与视觉SLAM的融合算法,协助开发相关应用。 4、协助编写技术文档,并参与团队的技术交流和知识分享。
更新于 2025-08-14
校招研发类
1.三维视觉算法开发:基于多视角图像实现稠密场景重建(Mesh/Point Cloud/NeRF)开发动态场景SLAM 系统,支持地图实时更新与闭环检测,构建语义场景理解模块,实现物体级三维语义分割; 2.多模态模型优化:设计视觉-激光雷达跨模态融合策略 ,提升障碍物检测召回率,实现视频理解模型轻量化(模型压缩至200MB以内),探索RLHF在感知决策中的应用(如交互式场景探索); 3.工程化落地:开发CUDA加速的 实时三维渲染管线 (FPS≥30),部署多模态模型至Jetson Orin 边缘计算平台,构建自动化标定工具链(支持相机-雷达-IMU联合标定)。
更新于 2025-05-15
社招算法
1. 负责研究传统和新型三维重建、生成、编辑等技术; 2. 结合大疆软硬件产品,研究下一代三维重建技术,并应用落地; 3. 支持智图、智模、司空等行业产品,推动大疆行业软硬一体化解决方案的技术领先。
更新于 2025-07-17