小米顶尖应届-机器人物理角色动画算法工程师-机器人事业部
校招全职地点:北京状态:招聘
任职要求
1. 硕士及以上学历,计算机图形学、人工智能、机器学习、机器人、应用数学等专业,理论功底深厚,有相关足式机器人控制经验更优; 2. 扎实的数学基础,精通线性代数,优化方法,统计理论等,并熟悉这些技术在计算机图形学/3D视觉中的应用; 3. 掌握诸如MDM、priorMDM、MLD、MoFusion等主流角色动画生成算法,对Diffusion、Transformer等基础算法具有深入的理解; 4. 扎实的C++、python编程能力; 5. 熟悉Isaac 平台使用,可以处理大规模数据,利用PyTorch、TensorFlow等框架进行大规模训练; 6. 了解3D建模软件(例如Maya,3DS Max, Blender)的使用,熟悉常用的3D模型格式; 7. 在相关领域的期刊/会议上以一作身份发表过文章,例如SIGGRAPH/TVCG/PAMI/IJCV/CVPR/ICCV/ECCV者优先。
工作职责
1. 负责机器人物理角色动画数据生成; 2. 负责算法移植到机器人上并完成相应的功能实机验证; 3. 持续跟踪国内外计算机图形学前沿研究成果,并进行相关算法复现,参与相关方向的论文与专利积累。 【课题名称】 机器人物理角色动画算法研究-机器人实验室 【课题内容】 追踪当下前沿机器人物理角色动画算法,复现并创新。
包括英文材料
学历+
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
相关职位
校招
1. 负责 高保真仿真场景重建算法和工具开发; 2. 负责 仿真场景数字孪生建设和仿真场景泛化能力建设; 3. 负责 仿真环境Mesh渲染优化、Mesh自动化补全算法开发; 4. 负责 3D资产/场景自动化导入仿真平台,物理属性自动识别工具开发。 【课题名称】 仿真场景高精细度重建 【课题内容】 针对机器人的操作和导航场景, 开发高保真的仿真场景重建算法和工具链, 具体包含: 1. 仿真场景视觉高保真重建 2. 仿真资产物理属性自动还原 3. 资产自动化导入仿真平台, 自动化补全Mesh 4. 仿真环境Mesh渲染优化
更新于 2025-06-26
校招
1、参与具身智能算法模型在技能学习、动作规划、抓取操作等应用上的研发,实现多场景多任务的泛化; 2、设计、训练、部署模仿学习、强化学习、迁移学习、多模态学习等算法,构建机器人各类应用的通用技能; 3、与大模型、运控等团队合作,推动具身智能数据集、机器人平台等各项目落地实施; 4、紧跟最新技术进展,将学术界前沿创新内容进行快速复现并创新,参与相关方向的论文与专利积累。
更新于 2025-06-23
校招
1. 开发基于机器学习的机器人控制策略,完成机器人端对端的算法训练与部署; 2. 负责算法策略的训练与移植部署,实现算法sim2real在机器人实机上落地应用; 3. 持续跟踪国内外前沿研究成果,并进行相关算法复现,参与相关方向的论文与专利积累。 【课题名称】 机器人强化学习算法研究 【课题内容】 追踪当下前沿机器人强化学习算法,复现并创新。
更新于 2025-06-26